Idea - (WIP) The Planet of Arda was created by Eru Ilúvatar, which was mentioned in The Silmarillion. Yes, I do know that Middle Earth was a flat plane earlier and became round after the downfall of Numenor being mentioned in it also . The whole point of writing this is not just to accept it but to prove it mathematically instead.
I saw the idea first on Fermats Library's tweet about the same and this is just a deeper/elaborate explanation of the same to get the backstory and context well enough.
https://x.com/fermatslibrary/status/1307327128611041280
Flat or Round? The question was first mentioned by Steven Weinberg in Gravitation and Cosmology: Principles and Applications Of The General Theory Of Relativity
where the relation for 4 points lying on a flat surface is:
0 = d 412 d 234 + d 413 d 224 + d 414 d 223 + d 423 d 214 + d 424 d 213 + d 434 d 212 + d 212 d 223 d 231 + d 212 d 224 d 241 + d 213 d 234 d 241 + d 223 d 234 d 242 − d 212 d 223 d 234 − d 213 d 232 d 224 − d 212 d 224 d 243 − d 214 d 242 d 223 − d 213 d 234 d 242 − d 214 d 243 d 232 − d 223 d 231 d 214 − d 221 d 213 d 234 − d 224 d 241 d 213 − d 221 d 214 d 243 − d 231 d 212 d 224 − d 232 d 221 d 214 . 0 = d_{412}d_{234} + d_{413}d_{224} + d_{414}d_{223} + d_{423}d_{214} + d_{424}d_{213} + d_{434}d_{212} + d_{212}d_{223}d_{231} + d_{212}d_{224}d_{241} + d_{213}d_{234}d_{241} + d_{223}d_{234}d_{242} - d_{212}d_{223}d_{234} - d_{213}d_{232}d_{224} - d_{212}d_{224}d_{243} - d_{214}d_{242}d_{223} - d_{213}d_{234}d_{242} - d_{214}d_{243}d_{232} - d_{223}d_{231}d_{214} - d_{221}d_{213}d_{234} - d_{224}d_{241}d_{213} - d_{221}d_{214}d_{243} - d_{231}d_{212}d_{224} - d_{232}d_{221}d_{214}. 0 = d 412 d 234 + d 413 d 224 + d 414 d 223 + d 423 d 214 + d 424 d 213 + d 434 d 212 + d 212 d 223 d 231 + d 212 d 224 d 241 + d 213 d 234 d 241 + d 223 d 234 d 242 − d 212 d 223 d 234 − d 213 d 232 d 224 − d 212 d 224 d 243 − d 214 d 242 d 223 − d 213 d 234 d 242 − d 214 d 243 d 232 − d 223 d 231 d 214 − d 221 d 213 d 234 − d 224 d 241 d 213 − d 221 d 214 d 243 − d 231 d 212 d 224 − d 232 d 221 d 214 . This can also be represented as a matrix as
[ a b c d ] \begin{bmatrix} a & b \\ c & d \end{bmatrix} [ a c b d ] [ 0 1 1 1 1 0 d 212 0 d 213 d 214 1 d 212 0 d 223 0 d 224 1 d 213 d 234 0 d 234 0 d 214 d 224 1 d 234 0 d 223 0 d 212 0 d 213 d 214 d 223 0 1 ] = 0 \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 \\ d_{212} & 0 & d_{213} & d_{214} & 1 & d_{212} \\ 0 & d_{223} & 0 & d_{224} & 1 & d_{213} \\ d_{234} & 0 & d_{234} & 0 & d_{214} & d_{224} \\ 1 & d_{234} & 0 & d_{223} & 0 & d_{212} \\ 0 & d_{213} & d_{214} & d_{223} & 0 & 1 \end{bmatrix} = 0 0 d 212 0 d 234 1 0 1 0 d 223 0 d 234 d 213 1 d 213 0 d 234 0 d 214 1 d 214 d 224 0 d 223 d 223 1 1 1 d 214 0 0 0 d 212 d 213 d 224 d 212 1 = 0
Δ C M ( d i j ) = d e t ( 1 d 12 2 a 13 a 14 a 15 a 21 a 22 a 23 a 24 a 25 a 31 a 32 a 33 a 34 a 35 a 41 a 42 a 43 a 44 a 45 a 51 a 52 a 53 a 54 a 55 ) ΔCM(d_{ij})=det \begin{pmatrix} 1 & d_{12}^2 & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \end{pmatrix} Δ CM ( d ij ) = d e t 1 a 21 a 31 a 41 a 51 d 12 2 a 22 a 32 a 42 a 52 a 13 a 23 a 33 a 43 a 53 a 14 a 24 a 34 a 44 a 54 a 15 a 25 a 35 a 45 a 55 and conversely,
288 V 2 = Δ C M ( ∣ x ⃗ i − x ⃗ j ∣ ) 288V^2=ΔCM(|x⃗ i−x⃗ j|) 288 V 2 = Δ CM ( ∣ x ⃗ i − x ⃗ j ∣ )